Huynh Do Lab#2 Part B:
Objective: Use Python in Google Colab to download your dataset "bikes.csv", to explore and summarize the Regression
[image:]
1. Import libraries
[image:]

The code above imports several Python libraries commonly used in data analysis.
1. import pandas as pd: Brings in Pandas, r go-to library for working with tabular data (like CSV files).
· Use it to load, clean, manipulate, and analyze datasets.
· Example: df = pd.read_csv("data.csv")
2. import statsmodels.api as sm :
· This loads Statsmodels, a library for doing deep-dive statistical analysis.Useful for regression with detailed output: coefficients, p-values, confidence intervals, etc.
· Commonly used for OLS (Ordinary Least Squares) regression.
3. from sklearn.linear_model import LinearRegression :
· model.fit(X_train, y_train)
· Grabs the Linear Regression model from Scikit-learn.
· Faster, simpler, great for prediction.
4. from sklearn.model_selection import train_test_split
· Split r dataset into training and testing sets.
· Ensures 're testing r model on unseen data.
· X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
5. from google.colab import files
· Used in Google Colab to upload/download files from your local system within a Colab notebook.
6. from sklearn.metrics import r2_score, mean_squared_error
· These are tools to evaluate r model’s performance.
· r2_score: How well r model explains the variance (ranges from 0 to 1; higher is better).
· mean_squared_error: Average of the squared differences between predicted and actual values (lower is better).

2. Upload file BIKES.csv
[image:]

The above screen shot is used to upload and load a CSV file named BIKE.csv into a Pandas Data Frame in a Google Colab environment.
When upload is done:
[image:]
3. OLS Regression: count ~ temp
[image:]
1. df[['temp']]
· Selecting the temperature column from the DataFrame df as r independent variable (X).
· Double square brackets [[]] keep it as a DataFrame (not a Series), which is what statsmodels expects.
2. sm.add_constant(...)
· OLS (Ordinary Least Squares) needs an intercept term — a baseline value when all predictors are 0.
· X_ols1 = sm.add_constant(df[['temp']]) adds a column of 1s to r X matrix so r model can learn the intercept (i.e., y = b0 + b1 * temp).
3. sm.OLS(df['total_rentals'], X_ols1
· This sets up an OLS regression model, predicting: total_rentals ~ temp where: df['total_rentals'] = dependent variable (what you're trying to predict, aka y)
4. .fit()
This trains the model using data:
It computes the best-fit line using least squares and returns an object (ols_model1) that stores all the regression results.
5. print(ols_model1.summary()):
This prints out a detailed regression summary, including:
· Coefficients (slope and intercept)
· Standard errors
6. Summary
· The result predicts that temp actually has a statistically significant impact — or if it's just hot air.
[image:]
The above figure is the result of running the OLS Regression python code

4. Sklearn Linear Regression: count ~ temp

[image:]
1. train_test_split(...)
· X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
· Splits data:80% for training and 20% for testing
· random_state=42 ensures reproducibility (so get the same split every time)
2. model = LinearRegression()\
3. model.fit(X_train, y_train)
· Trains the model using the training data.
· Learns the best-fit line: total_rentals ≈ b0 + b1 * temp
4. y_pred = model.predict(X_test)
Predicts rental counts using the test set temperatures.
Gives a list of predicted values based on the learned model.
5. r2 = r2_score(y_test, y_pred)
· Calculates R-squared, which tells how well r model explains the variability in the data.
· Ranges from 0 to 1:
· 1 = perfect prediction
· 0 = no better than guessing the mean
6. mse = mean_squared_error(y_test, y_pred)
MSE = average of squared prediction errors
Lower = better
Sensitive to outliers due to squaring
7. rmse = mse ** 0.5
RMSE = Root Mean Squared Error
[image:]
The above figure showed the final results
Quick summary:
1. Temperature does have an effect on rentals.
2. Warmer days = more rentals. The relationship is statistically significant.

image6.png
< OLS Regression: count ~ temp

OLS Regression Results

Dep. Variable: total_rentals R-square 0.156
Model: OLS Adj. R-squared: 0.156
Method: Least Squares F-statistic: 2006.
Date: Sat, 19 Apr 2025 Prob (F-statistic): 0.00
Time: ©00:21:18 Log-Likelihood: -71125.
No. Observations: 10886 AIC: 1.423e+05
Df Residuals: 10884 BIC: 1.423e+05
Df Model: 1
Covariance Type: nonrobust

coef std err t P>|t] [0.025 0.975]
const 6.0462 4.439 1.362 0.173 -2.656 14.748
temp 9.17e5 0.205 44.783 ©.000 8.769 9.572
Omnibus 1871.687 Durbin-Watson: 0.369
Prob(Omnibus): ©.000 Jarque-Bera (JB): 3221.966
Skew: 1.123 Prob(3B): 0.00
Kurtosis: 4.434 Cond. No. 60.4

Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

v 0s completed at 5:21PM

image7.png
-
Sklearn Linear Regression: count ~ temp

R,
X = df[['temp']]

y = df['total_rentals']

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

model = LinearRegression()
model.fit(X_train, y_train)

y_pred = model.predict(X_test)
r2 = r2_score(y_test, y_pred)

mse = mean_squared_error(y_test, y_pred)
rmse = mse ** 0.5

image8.png
o] print("\nSklearn Linear Regression: count ~ temp")
print(f"R? Score: {r2:.3f}")
print(f"RMSE: {rmse:.2f}")
— Sklearn Linear Regression: count ~ temp
R? Score: ©.169
RMSE: 165.59

image1.png
& Huynh_Do_Lab2_partBipynb ¥ &

File Edit View Insert Runtime Tools Help

image2.png
import pandas as pd

import statsmodels.api as sm

from sklearn.linear_model import LinearRegression

from sklearn.model_selection import train_test_split
from sklearn.metrics import r2_score, mean_squared_error
from google.colab import files

image3.png
o # Upload 'NBA.csv' file
uploaded = files.upload()

Load the dataset
df = pd.read_csv("BIKES.csv"|
df.head()

image4.png
)

No file chosen Upload widget is only available when the cell has been executed in the current browser session. Please reru
Saving BIKES.csv to BIKES (8).csv

datetime season holiday workingday weather temp atemp humidity windspeed casual registered count

0 2011-01-01 0:00:00 1 0 0 1 9.84 14395 81 0.0 3 13 16
1 2011-01-01 1:00:00 1 0 0 1 9.02 13.635 80 0.0 8 32 40
2 2011-01-01 2:00:00 1 0 0 1 9.02 13.635 80 0.0 5 27 32
3 2011-01-01 3:00:00 1 0 0 1 9.84 14395 75 0.0 3 10 13
4 2011-01-01 4:00:00 1 0 0 1 9.84 14395 75 0.0 0 1 1

image5.png
X_olsl = sm.add_constant(df[['temp']]) # Add intercept
ols_modell = sm.OLS(df['total_rentals'], X_olsl).fit()
print("OLS Regression: count ~ temp")
print(ols_modell.summary())

