Huynh Do Lab#2 Part B:

Objective: Use Python in Google Colab to download your dataset "bikes.csv", to explore and summarize the Regression

🛆 Huynh_Do_Lab2_partB.ipynb 🛛 🕁 🙆

File Edit View Insert Runtime Tools Help

1. Import libraries

import pandas as pd import statsmodels.api as sm from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split from sklearn.metrics import r2_score, mean_squared_error from google.colab import files

The code above imports several Python libraries commonly used in data analysis.

- 1. import pandas as pd: Brings in Pandas, r go-to library for working with tabular data (like CSV files).
 - Use it to load, clean, manipulate, and analyze datasets.
 - Example: df = pd.read_csv("data.csv")
- 2. import statsmodels.api as sm :
 - This loads Statsmodels, a library for doing deep-dive statistical analysis.Useful for regression with detailed output: coefficients, p-values, confidence intervals, etc.
 - Commonly used for OLS (Ordinary Least Squares) regression.
- 3. from sklearn.linear_model import LinearRegression :
 - model.fit(X_train, y_train)
 - Grabs the Linear Regression model from Scikit-learn.
 - Faster, simpler, great for prediction.
- 4. from sklearn.model_selection import train_test_split
 - Split r dataset into training and testing sets.
 - Ensures 're testing r model on unseen data.
 - X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
- 5. from google.colab import files
 - Used in Google Colab to upload/download files from your local system within a Colab notebook.
- 6. from sklearn.metrics import r2_score, mean_squared_error
 - These are tools to evaluate r model's performance.
 - r2_score: How well r model explains the variance (ranges from 0 to 1; higher is better).

- mean_squared_error: Average of the squared differences between predicted and actual values (lower is better).
- 2. Upload file BIKES.csv

```
# Upload 'NBA.csv' file
uploaded = files.upload()
# Load the dataset
df = pd.read_csv("BIKES.csv")
df.head()
```

The above screen shot is used to upload and load a CSV file named **BIKE.csv** into a Pandas Data Frame in a Google Colab environment.

When upload is done:

Ch Sav	Choose Files No file chosen Saving BIKES.csv to BIKES (8).cs			Uplo).csv	Upload widget is only available when the cell has been executed in the current browser session. Please re									
	-	datetime	season	holiday	workingday	weather	temp	atemp	humidity	windspeed	casual	registered	count	
0	2011-01	-01 0:00:00	1	0	0	1	9.84	14.395	81	0.0	3	13	16	
1	2011-01-	-01 1:00:00	1	0	0	1	9.02	13.635	80	0.0	8	32	40	
2	2011-01-	-01 2:00:00	1	0	0	1	9.02	13.635	80	0.0	5	27	32	
3	2011-01-	-01 3:00:00	1	0	0	1	9.84	14.395	75	0.0	3	10	13	
4	2011-01-	-01 4:00:00	1	0	0	1	9.84	14.395	75	0.0	0	1	1	

3. OLS Regression: count ~ temp

```
[24] # ------
# OLS Regression: count ~ temp
# ------
X_ols1 = sm.add_constant(df[['temp']]) # Add intercept
ols_model1 = sm.OLS(df['total_rentals'], X_ols1).fit()
print("OLS Regression: count ~ temp")
print(ols_model1.summary())
```

- 1. df[['temp']]
 - Selecting the temperature column from the DataFrame df as r independent variable (X).
 - Double square brackets [[]] keep it as a DataFrame (not a Series), which is what statsmodels expects.
- 2. sm.add_constant(...)

- OLS (Ordinary Least Squares) needs an intercept term a baseline value when all predictors are 0.
- X_ols1 = sm.add_constant(df[['temp']]) adds a column of 1s to r X matrix so r model can learn the intercept (i.e., y = b0 + b1 * temp).
- 3. sm.OLS(df['total_rentals'], X_ols1
 - This sets up an OLS regression model, predicting: total_rentals ~ temp where: df['total_rentals'] = dependent variable (what you're trying to predict, aka y)
- 4. .fit()

This trains the model using data:

It computes the best-fit line using least squares and returns an object (ols_model1) that stores all the regression results.

5. print(ols_model1.summary()):

This prints out a detailed regression summary, including:

- Coefficients (slope and intercept)
- Standard errors
- 6. Summary
 - The result predicts that temp actually has a statistically significant impact or if it's just hot air.

, OLS Regression: count ~ temp

ULS REGRESSION RESULTS												
Dep. Variable:		total_rentals				uared:	0.156					
Model:		OLS				R-squared:	0.156					
Method:		Least Squares				atistic:	2006.					
Date:		Sat, 19	Apr 202	5	Prob	(F-statistic):	0.00					
Time:			00:21:1	8	Log-	Likelihood:	-71125.					
No. Observatio	ns:	10886					1.423e+05					
Df Residuals:			1088	4	BIC:		1.423e+05					
Df Model:		1										
Covariance Tvp	e:		nonrobus	t								
	coe	F std	err		t	P> t	[0.025	0.975]				
const	6.0462	2 4	.439	1	.362	0.173	-2.656	14.748				
temp	9.170	5 0	.205	44	.783	0.000	8.769	9.572				
	======			===:	=====							
Omnibus:	1871.687			Durb:	in-Watson:	0.369						
Prob(Omnibus):			0.00	0	Jarq	ue-Bera (JB):	3221.966					
Skew:		1.123			Prob	(JB):	0.00					
Kurtosis:		4.434			Cond. No.			60.4				
Notes:												

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

✓ 0s completed at 5:21 PM

The above figure is the result of running the OLS Regression python code

4. Sklearn Linear Regression: count ~ temp

```
# ------
# Sklearn Linear Regression: count ~ temp
# ------
X = df[['temp']]
y = df['total_rentals']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
model = LinearRegression()
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
r2 = r2_score(y_test, y_pred)
mse = mean_squared_error(y_test, y_pred)
rmse = mse ** 0.5
```

- 1. train_test_split(...)
 - X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
 - Splits data:80% for training and 20% for testing
 - random_state=42 ensures reproducibility (so get the same split every time)
- 2. model = LinearRegression() \setminus
- 3. model.fit(X_train, y_train)
 - Trains the model using the training data.
 - Learns the best-fit line: total_rentals $\approx b0 + b1$ * temp
- 4. y_pred = model.predict(X_test)

Predicts rental counts using the test set temperatures.

Gives a list of predicted values based on the learned model.

- 5. $r2 = r2_score(y_test, y_pred)$
 - Calculates R-squared, which tells how well r model explains the variability in the data.
 - Ranges from 0 to 1:
 - \circ 1 = perfect prediction
 - \circ 0 = no better than guessing the mean
- 6. mse = mean_squared_error(y_test, y_pred)MSE = average of squared prediction errorsLower = better

Sensitive to outliers due to squaring

7. rmse = mse ** 0.5

RMSE = Root Mean Squared Error

```
♪ print("\nSklearn Linear Regression: count ~ temp")
print(f"R<sup>2</sup> Score: {r2:.3f}")
print(f"RMSE: {rmse:.2f}")

>>
Sklearn Linear Regression: count ~ temp
R<sup>2</sup> Score: 0.169
RMSE: 165.59
```

The above figure showed the final results

Quick summary:

- 1. Temperature **does have an effect** on rentals.
- 2. Warmer days = more rentals. The relationship is statistically significant.