
Huynh Do Lab#2 Part B:

Objective: Use Python in Google Colab to download your dataset "bikes.csv", to explore and

summarize the Regression

1. Import libraries

The code above imports several Python libraries commonly used in data analysis.

1. import pandas as pd: Brings in Pandas, r go-to library for working with tabular data (like

CSV files).

 Use it to load, clean, manipulate, and analyze datasets.

 Example: df = pd.read_csv("data.csv")

2. import statsmodels.api as sm :

 This loads Statsmodels, a library for doing deep-dive statistical analysis.Useful for

regression with detailed output: coefficients, p-values, confidence intervals, etc.

 Commonly used for OLS (Ordinary Least Squares) regression.

3. from sklearn.linear_model import LinearRegression :

 model.fit(X_train, y_train)

 Grabs the Linear Regression model from Scikit-learn.

 Faster, simpler, great for prediction.

4. from sklearn.model_selection import train_test_split

 Split r dataset into training and testing sets.

 Ensures 're testing r model on unseen data.

 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

5. from google.colab import files

 Used in Google Colab to upload/download files from your local system within a Colab

notebook.

6. from sklearn.metrics import r2_score, mean_squared_error

 These are tools to evaluate r model’s performance.

 r2_score: How well r model explains the variance (ranges from 0 to 1; higher is better).

 mean_squared_error: Average of the squared differences between predicted and actual

values (lower is better).

2. Upload file BIKES.csv

The above screen shot is used to upload and load a CSV file named BIKE.csv into a Pandas

Data Frame in a Google Colab environment.

When upload is done:

3. OLS Regression: count ~ temp

1. df[['temp']]

 Selecting the temperature column from the DataFrame df as r independent

variable (X).

 Double square brackets [[]] keep it as a DataFrame (not a Series), which is what

statsmodels expects.

2. sm.add_constant(...)

 OLS (Ordinary Least Squares) needs an intercept term — a baseline value when

all predictors are 0.

 X_ols1 = sm.add_constant(df[['temp']]) adds a column of 1s to r X matrix so r

model can learn the intercept (i.e., y = b0 + b1 * temp).

3. sm.OLS(df['total_rentals'], X_ols1

 This sets up an OLS regression model, predicting: total_rentals ~ temp where:

df['total_rentals'] = dependent variable (what you're trying to predict, aka y)

4. .fit()

This trains the model using data:

It computes the best-fit line using least squares and returns an object (ols_model1)

that stores all the regression results.

5. print(ols_model1.summary()):

This prints out a detailed regression summary, including:

 Coefficients (slope and intercept)

 Standard errors

6. Summary

 The result predicts that temp actually has a statistically significant impact — or if

it's just hot air.

The above figure is the result of running the OLS Regression python code

4. Sklearn Linear Regression: count ~ temp

1. train_test_split(...)

 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,

random_state=42)

 Splits data:80% for training and 20% for testing

 random_state=42 ensures reproducibility (so get the same split every time)

2. model = LinearRegression()\

3. model.fit(X_train, y_train)

 Trains the model using the training data.

 Learns the best-fit line: total_rentals ≈ b0 + b1 * temp

4. y_pred = model.predict(X_test)

Predicts rental counts using the test set temperatures.

Gives a list of predicted values based on the learned model.

5. r2 = r2_score(y_test, y_pred)

 Calculates R-squared, which tells how well r model explains the variability in the

data.

 Ranges from 0 to 1:

o 1 = perfect prediction

o 0 = no better than guessing the mean

6. mse = mean_squared_error(y_test, y_pred)

MSE = average of squared prediction errors

Lower = better

Sensitive to outliers due to squaring

7. rmse = mse ** 0.5

RMSE = Root Mean Squared Error

The above figure showed the final results

Quick summary:

1. Temperature does have an effect on rentals.

2. Warmer days = more rentals. The relationship is statistically significant.

