
Huynh Do Lab#3: 

Objective:  

This lab assignment works with Principal Component Analysis (PCA) to expose how they can 

determine the best explained variance ratio. This is a statistical procedure that is used to reduce 

 

1. Import libraries 

 
 

The code above imports several Python libraries commonly used in data analysis. 

1. matplotlib.pyplot – Used to create basic graphs like scatter plots, line charts, and bar 

graphs. 

2. pandas – Loads and manages tabular data (like CSVs) into an easy-to-use DataFrame. 

3. numpy – Powers fast mathematical operations, especially with large arrays of numbers. 

4. sklearn – Provides machine learning algorithms and data processing tools. 

5. scale – Instantly standardizes your data to have a mean of 0 and variance of 1. 

6. PCA – Reduces the number of variables while keeping the important patterns in your 

data. 

7. seaborn – Makes fancier, cleaner-looking graphs with less code than plain matplotlib. 

8. google.colab.files – Lets you upload and download files when working inside Google 

Colab. 

9. StandardScaler – Another way to standardize data, but more control across train/test 

splits. 

 

 

 



2. Upload file b5.csv 

 

 

The above screen shot is used to upload and load a CSV file named b5.csv into a Pandas Data 

Frame in a Google Colab environment. 

When upload is done: 

 

3. Process PCA 

 

 Step 1 

 

 
 scaler = StandardScaler()  Creates a scaler object to standardize features (zero 

mean, unit variance). 

 df_scaled = scaler.fit_transform(df)  Fits the scaler to the dataset and transforms 

the data into a standardized form. 

 

 



 Step 2 

 

 
 

 cov_matrix = np.cov(df_scaled.T)  Calculates the covariance matrix by 

transposing the standardized data so features are treated as variables. 

 

 Step 3 

 

 
 eigenvalues, eigenvectors = np.linalg.eigh(cov_matrix)  Computes the 

eigenvalues and eigenvectors of the covariance matrix to find directions and 

magnitudes of variance. 

 

 Step 4 

 

 

 sorted_indices = np.argsort(eigenvalues)[::-1]  Finds indices that sort 

eigenvalues from largest to smallest. 

 eigenvalues_sorted = eigenvalues[sorted_indices]  Reorders eigenvalues in 

descending order. 

 

 Step 5 

 

 
 



 k2 = 2  Sets the number of principal components to keep at 2 for 2D projection. 

 top_k2_eigenvectors = eigenvectors_sorted[:, :k2]  Selects the first two sorted 

eigenvectors. 

 df_pca_2d = df_scaled.dot(top_k2_eigenvectors)  Projects the standardized data 

onto the 2D principal component space. 

 df_pca_2d = pd.DataFrame(df_pca_2d, columns=[f'PC{i+1}' for i in 

range(k2)])  Converts the projected data into a labeled DataFrame with PC1 and 

PC2. 

 

 

 Step 6 

 

 
 

 plt.figure(figsize=(8, 6))  Creates a new figure with specified size. 

 plt.scatter(df_pca_2d['PC1'], df_pca_2d['PC2'], alpha=0.5, s=10)  Plots the 

2D PCA result as a scatter plot. 

 plt.xlabel('Principal Component 1')  Labels the x-axis. 

 plt.ylabel('Principal Component 2')  Labels the y-axis. 

 plt.title('PCA Projection (2D)')  Adds a title to the plot. 

 plt.grid(True)  Enables grid lines for better readability. 

 



 
 

 Step 7 

 

 
 

 k3 = 3  Sets the number of principal components to 3 for 3D projection. 

 top_k3_eigenvectors = eigenvectors_sorted[:, :k3]  Selects the first three sorted 

eigenvectors. 

 df_pca_3d = df_scaled.dot(top_k3_eigenvectors)  Projects the standardized data 

onto the 3D principal component space. 

 df_pca_3d = pd.DataFrame(df_pca_3d, columns=[f'PC{i+1}' for i in 

range(k3)])  Converts the projected data into a labeled DataFrame with PC1, 

PC2, and PC3. 

 

 

 

 

 

 

 



 Step 8 

 

 
 

 from mpl_toolkits.mplot3d import Axes3D  Imports 3D plotting tools for 

matplotlib. 

 fig = plt.figure(figsize=(10, 7))  Creates a new figure with specified size. 

 ax = fig.add_subplot(111, projection='3d')  Adds a 3D subplot to the figure. 

 ax.scatter(df_pca_3d['PC1'], df_pca_3d['PC2'], df_pca_3d['PC3'], alpha=0.4, 

s=10)  Plots the 3D PCA result as a scatter plot. 

 ax.set_xlabel('Principal Component 1')  Labels the x-axis. 

 ax.set_ylabel('Principal Component 2')  Labels the y-axis. 

 ax.set_zlabel('Principal Component 3')  Labels the z-axis. 

 ax.set_title('PCA Projection (3D)')  Adds a title to the 3D plot. 

 

 



 
 

 Total summary 

 

 

PC1 explains 16.10% of the total variance. 

PC2 explains 9.25% of the total variance. 

PC3 explains 7.53% of the total variance. 


