
Huynh Do Lab#3:

Objective:

This lab assignment works with Principal Component Analysis (PCA) to expose how they can

determine the best explained variance ratio. This is a statistical procedure that is used to reduce

1. Import libraries

The code above imports several Python libraries commonly used in data analysis.

1. matplotlib.pyplot – Used to create basic graphs like scatter plots, line charts, and bar

graphs.

2. pandas – Loads and manages tabular data (like CSVs) into an easy-to-use DataFrame.

3. numpy – Powers fast mathematical operations, especially with large arrays of numbers.

4. sklearn – Provides machine learning algorithms and data processing tools.

5. scale – Instantly standardizes your data to have a mean of 0 and variance of 1.

6. PCA – Reduces the number of variables while keeping the important patterns in your

data.

7. seaborn – Makes fancier, cleaner-looking graphs with less code than plain matplotlib.

8. google.colab.files – Lets you upload and download files when working inside Google

Colab.

9. StandardScaler – Another way to standardize data, but more control across train/test

splits.

2. Upload file b5.csv

The above screen shot is used to upload and load a CSV file named b5.csv into a Pandas Data

Frame in a Google Colab environment.

When upload is done:

3. Process PCA

 Step 1

 scaler = StandardScaler() Creates a scaler object to standardize features (zero

mean, unit variance).

 df_scaled = scaler.fit_transform(df) Fits the scaler to the dataset and transforms

the data into a standardized form.

 Step 2

 cov_matrix = np.cov(df_scaled.T) Calculates the covariance matrix by

transposing the standardized data so features are treated as variables.

 Step 3

 eigenvalues, eigenvectors = np.linalg.eigh(cov_matrix) Computes the

eigenvalues and eigenvectors of the covariance matrix to find directions and

magnitudes of variance.

 Step 4

 sorted_indices = np.argsort(eigenvalues)[::-1] Finds indices that sort

eigenvalues from largest to smallest.

 eigenvalues_sorted = eigenvalues[sorted_indices] Reorders eigenvalues in

descending order.

 Step 5

 k2 = 2 Sets the number of principal components to keep at 2 for 2D projection.

 top_k2_eigenvectors = eigenvectors_sorted[:, :k2] Selects the first two sorted

eigenvectors.

 df_pca_2d = df_scaled.dot(top_k2_eigenvectors) Projects the standardized data

onto the 2D principal component space.

 df_pca_2d = pd.DataFrame(df_pca_2d, columns=[f'PC{i+1}' for i in

range(k2)]) Converts the projected data into a labeled DataFrame with PC1 and

PC2.

 Step 6

 plt.figure(figsize=(8, 6)) Creates a new figure with specified size.

 plt.scatter(df_pca_2d['PC1'], df_pca_2d['PC2'], alpha=0.5, s=10) Plots the

2D PCA result as a scatter plot.

 plt.xlabel('Principal Component 1') Labels the x-axis.

 plt.ylabel('Principal Component 2') Labels the y-axis.

 plt.title('PCA Projection (2D)') Adds a title to the plot.

 plt.grid(True) Enables grid lines for better readability.

 Step 7

 k3 = 3 Sets the number of principal components to 3 for 3D projection.

 top_k3_eigenvectors = eigenvectors_sorted[:, :k3] Selects the first three sorted

eigenvectors.

 df_pca_3d = df_scaled.dot(top_k3_eigenvectors) Projects the standardized data

onto the 3D principal component space.

 df_pca_3d = pd.DataFrame(df_pca_3d, columns=[f'PC{i+1}' for i in

range(k3)]) Converts the projected data into a labeled DataFrame with PC1,

PC2, and PC3.

 Step 8

 from mpl_toolkits.mplot3d import Axes3D Imports 3D plotting tools for

matplotlib.

 fig = plt.figure(figsize=(10, 7)) Creates a new figure with specified size.

 ax = fig.add_subplot(111, projection='3d') Adds a 3D subplot to the figure.

 ax.scatter(df_pca_3d['PC1'], df_pca_3d['PC2'], df_pca_3d['PC3'], alpha=0.4,

s=10) Plots the 3D PCA result as a scatter plot.

 ax.set_xlabel('Principal Component 1') Labels the x-axis.

 ax.set_ylabel('Principal Component 2') Labels the y-axis.

 ax.set_zlabel('Principal Component 3') Labels the z-axis.

 ax.set_title('PCA Projection (3D)') Adds a title to the 3D plot.

 Total summary

PC1 explains 16.10% of the total variance.

PC2 explains 9.25% of the total variance.

PC3 explains 7.53% of the total variance.

